Critical roles for EphB and ephrin-B bidirectional signaling in retinocollicular mapping
نویسندگان
چکیده
Graded expression of EphB and ephrin-B along the dorsoventral axis of the retina indicates a role for these bidirectional signalling molecules in dorsoventral-mediolateral retinocollicular mapping. Although previous studies have implicated EphB2 forward signalling in mice, the intracellular component of EphB2 essential for retinocollicular mapping is unknown as are the roles for EphB1, ephrin-B1, and ephrin-B2. Here we show that EphB2 tyrosine kinase catalytic activity and EphB1 intracellular signalling are key mediators of ventral-temporal retinal ganglion cell axon retinocollicular mapping, by likely interacting with ephrin-B1 in the superior colliculus. We further elucidate roles for the ephrin-B2 intracellular domain in retinocollicular mapping and present the unexpected finding that both dorsal and ventral-temporal retinal ganglion cell axons utilize reverse signalling for topographic mapping. These data demonstrate that both forward and reverse signalling initiated by EphB:ephrin-B interactions have a major role in dorsoventral retinal ganglion cell axon termination along the mediolateral axis of the superior colliculus.
منابع مشابه
Topographic Mapping in Dorsoventral Axis of the Xenopus Retinotectal System Depends on Signaling through Ephrin-B Ligands
Ephrin-B and EphB are distributed in matching dorsoventral gradients in the embryonic Xenopus visual system with retinal axons bearing high levels of ligand (dorsal) projecting to tectal regions with high receptor expression (ventral). In vitro stripe assays show that dorsal retinal axons prefer to grow on EphB receptor stripes supporting an attractive guidance mechanism. In vivo disruption of ...
متن کاملMolecular gradients and development of retinotopic maps.
Gradients of axon guidance molecules have long been postulated to control the development of the organization of neural connections into topographic maps. We review progress in identifying molecules required for mapping and the mechanisms by which they act, focusing on the visual system, the predominant model for map development. The Eph family of receptor tyrosine kinases and their ligands, th...
متن کاملMolecular Mechanisms of Pre- and Postsynaptic Ephb/ephrin-B Signaling in Synapse Formation and Function
Proper function of the central nervous system relies on precise and coordinated cell-cell interactions and communication via synaptic transmission to assemble neuronal networks. Aberrant synaptic transmission is a hallmark of neuronal disease. The EphB family of receptor tyrosine kinases and their ephrin-B ligands play critical roles in the central nervous system in axon guidance, formation of ...
متن کاملBifunctional action of ephrin-B1 as a repellent and attractant to control bidirectional branch extension in dorsal-ventral retinotopic mapping.
We report that the EphB receptor ligand, ephrin-B1, may act bifunctionally as both a branch repellent and attractant to control the unique mechanisms in mapping the dorsal-ventral (DV) retinal axis along the lateral-medial (LM) axis of the optic tectum. EphB receptors are expressed in a low to high DV gradient by retinal ganglion cells (RGCs), and ephrin-B1 is expressed in a low to high LM grad...
متن کاملUnidirectional Eph/ephrin signaling creates a cortical actomyosin differential to drive cell segregation
Cell segregation is the process by which cells self-organize to establish developmental boundaries, an essential step in tissue formation. Cell segregation is a common outcome of Eph/ephrin signaling, but the mechanisms remain unclear. In craniofrontonasal syndrome, X-linked mosaicism for ephrin-B1 expression has been hypothesized to lead to aberrant Eph/ephrin-mediated cell segregation. Here, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2011